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Diffusive alignment of the magnetic field in active regions of plasmas

Manuel Núñez
Departamento de Ana´lisis Matema´tico, Universidad de Valladolid, 47005 Valladolid, Spain

~Received 19 May 2000!

Regions of high magnetic field within plasmas tend to keep this field aligned in a dominant direction. This
occurs both in observed phenomena and in simulations of kinematic and nonlinear dynamos. Although most of
this effect is due to the particular dynamics of each case, magnetic diffusion also plays an important role. It is
shown here that the unitary magnetic field vector satisfies a certain estimate that bounds its possible variations.
The dependence of the bound on the plasma parameters is analyzed.

PACS number~s!: 52.30.Jb, 52.65.Kj, 96.60.Qc, 02.30.Jr
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I. INTRODUCTION

Although the details of the process of growth and ma
tenance of magnetic fields within charged fluids are not
fully understood, we have a reasonable picture of the mec
nism of transport by fluid motions and dissipation by res
tivity to account for many observed features of real plasm
Among the most consistent characteristics one finds is
the magnetic field tends to be parallel~sometimes antiparal
lel! in regions where its magnitude is large. Sunspots a
typical example: the magnetic field either points outward
inward from the Sun’s atmosphere, and it does not dispe
around. Sunspots of opposite polarity may be close toget
but still the radial character of the field is predomina
Simulations of dynamos are plentiful: most of them take
fluid velocity for granted, disregarding the effect of the Lo
entz force upon it~kinematic dynamo!, but increasingly
models take into account the full magnetohydrodynam
equations or some nonlinear approximation to them. T
phenomenon of alignment is also present: the most ac
regions are often cigar- or sheet-shaped, and in each of t
the magnetic field is essentially unidirectional~see, e.g.,
@1,2#!. These facts admitad hocexplanations: if, as univer
sally admitted, sunspots are the regions where a magn
flux tube erupts through the surface, it is natural for the fi
to follow the tube axis; as for dynamo simulations, the ma
netic field concentrates in regions of constructive foldi
~see, e.g.,@3#! and follows the most unstable direction of th
flow @4#, which usually is more or less constant in tho
regions. These arguments, although far from rigorous, s
essentially solid; anyway it appears that most of the magn
field alignment is due to the dynamics of the phenomen
under consideration. But why does one never see a w
open sheaf of a strong magnetic field starting from a sm
region? Diffusivity is one reason: sharp changes in the dir
tion of the field are rapidly smoothed, at a quicker rate th
the magnitude of the field. We will prove that if we decom
pose the magnetic fieldB in its magnitudeB times the unit
vectorb, Bu“bu2 remains bounded in the mean by a const
depending only on the forcing and the initial condition
Thus we may guarantee that no dynamic process will p
duce a largeu“bu in a sizable region whereB is also large.

The paper is divided in two main parts. In the first one
deduce from the equations of incompressible magnetohy
PRE 621063-651X/2000/62~5!/7266~5!/$15.00
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dynamics a number of inequalities: although most of th
are classical, the wide variety of possible boundary con
tions is not often addressed and many of them are impor
enough to be considered. The second part builds upon
previous estimates to study the behavior of the normali
magnetic field and the parameters affecting it: in addition
the forcing, boundary, and initial conditions, the presence
interfaces of null magnetic field within the plasma plays
positive role, in the sense that they force the field to be m
parallel. The size of kinetic and magnetic diffusivity, i.e.,
viscosity and resistivity obviously is essential in the ma
estimates. These bounds have been derived from recen
sults on fluid vorticity@5,6#, but many features are specific t
magnetohydrodynamics.

II. BOUNDARY CONDITIONS AND ENERGY
INEQUALITIES

We will assume that the plasma satisfies the incompre
ible magnetohydrodynamics~MHD! equations with a ge-
neric forcing:

]u

]t
5nDu2u•“u1B•“B2“p2“S B2

2 D1f, ~1!

]B

]t
5hDB2u•“B1B•“u1g, ~2!

“•u5“•B50, ~3!

plus some adequate boundary conditions.u stands for the
fluid velocity, B is the magnetic field,p is the kinetic pres-
sure,f andg are possible forcing terms,n is the fluid viscos-
ity andh the resistivity of the plasma. With a different sca
ing n andh could represent the inverses of the kinetic a
magnetic Reynolds numbers. It often happens thatfÞ0, but
g50, i.e., that while some material force, such as gravi
tion, acts upon the fluid, there is no added current for
induction equation. In this case the dependence of the e
mates uponh improves. In the ideal caseh50, the mag-
netic field lines are transported by the flow as mate
points. The kinematic dynamo problem considers only
induction equation~2!, by assumingu knowna priori. As for
the domainV where the fluid lies and the boundary cond
7266 ©2000 The American Physical Society
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tions u and B must satisfy, we will allow many of them
provided a Poincare´ inequality holds for the space of func
tions under consideration. That is, there must be a constaa
such that for allw satisfying the conditions of our problem

E
V

uwu2 dV<aE
V

u“wu2 dV. ~4!

This happens for practically all the interesting cases. IfV is
bounded and rather smooth~Lipschitz!, and there exists a
continuous seminormp on the Sobolev space

H1~V!N5H wY E
V

uwu2 dV1E
V

u“wu2 dV,`J , ~5!

such thatp is a norm in the constant functions~only vanish-
ing at the zero function! and it is identically zero on the
subspace ofH1(V)N of functions satisfying our conditions
then the Poincare´ inequality always holds@7,8#. For instance,
p could be

p~w!5U E
V

w dVU,
p~w!5E

]V
uw•nuds,

p~w!5E
V0

uwu dV, V0,V,Vol~V0!Þ0.

The first condition is appropriate for spaces of functions
mean zero, the second one for any space such thatw•nu]V

50, and the third one when the functions we are interes
in must vanish in a certain subset ofV. The spaceH0

1(V)N

of functions vanishing in the boundary satisfies the Poinc´
inequality even ifV is bounded only in one direction, i.e
when it is contained between two hyperplanes. Perio
problems are studied for functions of zero mean; when
flow does not cross the boundary one hasu•n50, and if
there is no inflow of plasma,u•n>0. Except for the periodic
case we will always assumeB•n50 at the boundary, which
happens when the magnetic field outsideV is null or parallel
to the boundary. Transmission problems are also allowe
there is a wall withinV such thatu•n, B•n, u2, B2 andp
are continuous through it, the inequalities will remain val

We will make some notational conventions to avoid
cumbersome number of integrals. We will denote byu u the
L2(V) ~or L2(V)N) norm of a function

uwu5S E
V

uw~ t,x!u2 dV~x! D 1/2

.

For a fixed time interval@0,T#, i i will denote theL2(V
3@0,T#) norm:

iwi5S E
0

T

dtE
V

uw~ t,x!u2 dV~x! D 1/2

.

Under any of these conditions, multiplying Eq.~1! by u, Eq.
~2! by B, integrating inV and adding we get
f

d

re

ic
e

if

.

1

2

]

]t
uuu21

1

2

]

]t
uBu21nu“uu21hu“Bu2

52E
]V

S p1B21
1

2
u2Du•n ds1

n

2E]V

]u2

]n
ds

1
h

2E]V

]B2

]n
ds1~ f,u!L21~g,B!L2, ~6!

and integrating in time in an interval@0,T# where we assume
all the functions to exist,

1

2
uu~T!u21

1

2
uB~T!u21ni“ui21hi“Bi2

5
1

2
uu~0!u21

1

2
uB~0!u2

2E
0

T

dtE
]V

S p1B21
1

2
u2Du•n ds

1
n

2E0

T

dtE
]V

]u2

]n
ds

1
h

2E0

T

dtE
]V

]B2

]n
ds1E

0

T

~ f,u!L2 dt

1E
0

T

~g,B!L2 dt. ~7!

The boundary integrals are negative whenu•n>0 ~there is
no inflow toward the domain!, and the size ofu2 and B2

decreases in mean toward the boundary ofV. They vanish in
periodic problems, for homogeneous Dirichlet and Neuma
problems, for the perfect conductor boundaryB•n50, (“
3B)3n50, and they are negative for mixed problems wit
out intake of plasma: Ifu•n>0 andA is a positive matrix
such that (Aw1]w/]n)u]V50, then

E
]V

]w2

]n
ds522E

V
w•Aw dV<0.

Not only in these configurations is the boundary integ
never positive: in most realistic cases, the size of veloc
and magnetic field decreases in mean towards the bound
so we will assume from now on that the boundary terms
not positive. Using Cauchy-Schwarz’s inequality, one ge

1
2 uu~T!u21 1

2 uB~T!u21ni“ui21hi“Bi2

< 1
2 uu~0!u21 1

2 uB~0!u21i fi iui1igi iBi . ~8!

Since we assume thatu andB satisfy a Poincare´ inequality
~with possible different constantsa andb), we have

uuu<au“uu, uBu<bu“Bu,

i fi iui<
n

2
i“ui21

a2

2n
i fi2,
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igi iBi<
h

2
i“Bi21

b2

2h
igi2,

we find

uu~T!u21uB~T!u21ni¹ui21hi¹Bi2

<uu~0!u21uB~0!u21
a2

n
i fi21

b2

h
igi2. ~9!

This inequality yields a double estimate: upon the norm
“u, “B in L2(@0,T#3V) and upon the norm ofu(T), B(T)
in L2(V). The last one could be further refined using Gro
wall’s inequality @8#, but we will not need this. Ifg50, we
could admit evenh50 and boundB(T), but we cannot be
certain that“B remains bounded. The physical meaning
that a magnetic field transported by a possibly chaotic fl
and unsmoothed by diffusion may undergo sharp spa
variations, although its energy will not exceed the origin
one and the one contributed by the flow.

In the kinematic dynamo problem~with g50,
as it is usually studied! we cannot cancel the term
*V(B•“B)•u dV with *V(B•“u)•B dV, and we are left
with

1

2

]

]t
uBu21hu“Bu25

h

2E]V

]B2

]n
ds1E

V
~B•“u!•B dV.

~10!

Assuming as before that the boundary integral is not posi
and denoting byu“uu` the supremum of“u in V, we have

1

2

]uBu2

]t
<uBu2S u“uu`2

h

b D , ~11!

so that

uB~ t !u2<uB~0!u2 expS 2
2h

b
t12E

0

t

u“u~s!u` dsD .

~12!

Going back to Eq.~10! and integrating in@0,T#,

hi“Bi2<
1

2
uB~0!u21E

0

T

u“u~ t !u`uB~ t !u2 dt, ~13!

which may be bounded in several ways by using the previ
estimate onuB(t)u. Hence we are able to boundi“Bi only
by using the additional hypothesisuuu`,`.

III. ESTIMATES FOR THE UNIT MAGNETIC FIELD

In every point where the magnetic field does not vani
let us writeB5Bb, whereB is the Euclidean norm ofB and
b is a unit vector. SinceB•B5B2,

1

2

]B2

]t
5B•

]B

]t
,

1
2 u•“B25~u•“B!•B,
f

-

al
l

e

s

,

DB252~DB!•B12u“Bu2.

ThereforeB2 satisfies in the open set of points whereB
Þ0,

1

2 S ]B2

]t
1u•“B22hDB2D1hu“Bu25~B•“u!•B1g•B.

~14!

Since alsoDB252(DB)B12u¹Bu2,

B
]B

]t
1Bu•“B2hBDB2hu“Bu21hu“Bu2

5~B•“u!•B1g•B. ~15!

Also, at any point withBÞ0,

u“Bu25(
i , j

~] iBj !
2

5(
i,j

~]iB!2~bj!
21B2(

i,j
~]ibj!

212(
i,j

B~]iB!bj~]ibj!

5u“Bu21B2u“bu2,

because( jbj
251. Hence, dividing Eq.~15! by B,

]B

]t
1u•“B2hDB1hBu“bu25~B•“u!•b1g•b.

~16!

Although B2 is at least as smooth asB, B may fail to be
differentiable at the null points ofB, and the equation abov
is only valid at the open setV2$B50%. We will assumeB
smooth enough inV3@0,T#, and for the sake of simplicity
that the second differential ofB does not vanish at any nu
point of B. Then the null sets ofB are either isolated points
lines, or surfaces. For points or curves,DB is integrable in a
neighborhood of them~as one sees by using spherical
cylindrical coordinates: the possible singularity ofDB is in-
tegrable!. By taking small neighborhoods, we see that the
sets may be ignored when integrating Eq.~16! in V. The
surfaces of nullB, however, must be dealt with separate
they are interfaces separating the connected componen
V05V2$B50%. The term u•“B remains bounded
throughoutV even at the setsB50. Moreover, for every
component ofV0, its boundary is formed in part by surface
whereB50, and therefore the integral ofBu•n is zero, and
~perhaps! by part of]V. The termhDB, however, is influ-
enced by interfaces. LetV1 be a component ofV0. Then

E
V1

DB dV5E
]V1

]B

]n
ds.

as before,]V12]V is formed by interfaces whereB50: let
G be one of them. ThenG is also part of the boundary o
another component ofV0. For this second region, the oute
normal is opposite, whileB decreases towardG at the same
rate at both sides of it~due to the smoothness ofB2). Hence
the contribution to the boundary integral ofG is multiplied
by two in the whole integration. If we denote byg the slope
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of B in every interfaceG ~i.e., g5]B/]n at both sides!, and
G j5G j (t) are all the interfaces,

E
V

DB dV52(
j
E

G j

g ds1E
]V

]B

]n
ds.

Notice that sinceB decreases towardG j , alwaysg,0. In-
tegrating Eq.~16! in V, we get

]

]tEV
B dV1hE

V
Bu“bu2 dV

52E
]V

Bu•n ds12h(
j
E

G j

g ds1hE
]V

]B

]n
ds

1E
V

~B•“u!•b dV1E
V

g•b dV. ~17!

Integrating in time in@0,T#,

E
V

B~T! dV1hE
0

TE
V

Bu“bu2 dV dt

52E
0

TE
]V

Bu•n ds dt12hE
0

T

(
j
E

G j

g ds dt

1hE
0

TE
]V

]B

]n
ds dt1E

0

TE
V

~B•“u!•b dV dt

1E
0

TE
V

g•b dV dt. ~18!

Notice that the number and shape ofG j may depend ont.
This first term of the right-hand side is always negative. T
second one is negative too, and its size increases with
number of interfaces and their areas, as well as with the
of decrease ofB toward them. If two interfaces are clos
together and the magnetic field is not small between th
ugu must be large and the contribution of the integral to
right hand side more negative. For intrincate interfaces
term may decrease the bounding constant to a signifi
degree.

If we assume thatB decreases in mean toward the boun
ary, the third term is also negative. The fourth one may
bounded byi“ui iBi , and the last term by the integral i
@0,T#3V of ug(x)u. i“ui may be bounded by Eq.~9!. This
bound scales liken21 if g50, and like sup$n21,(nh)21/2%
otherwise.

As for iBi , there are several ways to estimate it. A
analogous bound to the previous one using Poincare´’s in-
equality would yield a scale (nh)21/2 if g50,
sup$h21,(nh)21/2% otherwise. We may also forget about th
term in “B and integrateuB(T)u in time: this would scale
like sup$n21/2,h21/2%, but it would grow in time. These es
timates are important because oftenn and especiallyh are
very small, so the smaller negative powers of them one u
the better.

If we are dealing with a kinematic dynamo problem
i“ui must be known to be boundeda priori, and iBi is
estimated by integrating Eq.~12! in time. In this caseh and
e
he
te

,
e
is
nt

-
e

s,

n do not occur in the denominator, which is convenient, b
the hypothesis of boundedness of the maximum ofu“uu is
very strong.

Let M denote the bound obtained in the right-hand te
by the above considerations. Notice that it only depends
the initial conditions, the forcing, and the hypothesis of t
mean decrease ofB toward the boundary. The estimate

E
V

B~T! dV1hE
0

TE
V

Bu“bu2 dV dt<M ~19!

is our main result. That*VB(T) dV is bounded is not a sur
prise whenV is itself bounded, because theL2 norm uB(T)u
is bounded and it dominates theL1 norm: but for a domain
V of infinite measure this is an unrelated bound. Essenti
it is more demanding on the decrease ofuB(x)u when uxu
→`. However, the most interesting term is the second o
it bounds the changes of direction ofB in a more effective
way thaniBi . Its dependence onn and h is at worst like
sup$h21n23/2,h23/2n21,h22n21/2%, andh21n23/2 if g50.

Generally speaking, this estimate limits the variations
direction of the magnetic field in regions where it is large.
a rather rough example of its order of accuracy, notice t
for any U,V, by Cauchy-Schwarz’s inequality,

E
0

TE
U

u“bu dV dt<M S E
0

TE
U

1

B
dV dtD 1/2

.

Thus the mean variation ofb within a subsetU whereB is in
mean larger thanL does not exceed the order of 1/AL.

It is important to notice that when dealing with antipara
lel fields close by~say by changingB to 2B through a null
point! one should not interpret“b as the gradient of a jump
~which would yield a distributionald function, so that the
integral ofBu“b2u would be infinite!. Rather this means tha
B is crossing an interface and we must integrate separate
each of the regions. Thus it does not matter ifb is parallel or
antiparallel, except that the last possibility denotes the p
ence of interfaces and as explained before decreases the
stantM. What is clearly forbidden are rapid spatial variatio
of b in regions of large field.

IV. CONCLUSIONS

We have shown that one of the effects of kinetic a
magnetic dissipation is the alignment of the magnetic field
active regions of plasmas. The mean in time and space o
field size multiplied by the square of the gradient of the u
field vector is bounded by a constant depending only on
initial conditions and the forcing terms, and improved by t
possible presence of surfaces of null magnetic field. The
pendence of this constant on the orders of viscosity and
sistivity has also been found.
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