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Diffusive alignment of the magnetic field in active regions of plasmas
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Regions of high magnetic field within plasmas tend to keep this field aligned in a dominant direction. This
occurs both in observed phenomena and in simulations of kinematic and nonlinear dynamos. Although most of
this effect is due to the particular dynamics of each case, magnetic diffusion also plays an important role. It is
shown here that the unitary magnetic field vector satisfies a certain estimate that bounds its possible variations.
The dependence of the bound on the plasma parameters is analyzed.

PACS numbgs): 52.30.Jb, 52.65.K], 96.60.Qc, 02.30.Jr

[. INTRODUCTION dynamics a number of inequalities: although most of them
are classical, the wide variety of possible boundary condi-
Although the details of the process of growth and main-tions is not often addressed and many of them are important
tenance of magnetic fields within charged fluids are not yeenough to be considered. The second part builds upon the
fully understood, we have a reasonable picture of the mechdrevious estimates to study the behavior of the normalized
nism of transport by fluid motions and dissipation by resis-magnetic field and the parameters affecting it: in addition to
tivity to account for many observed features of real plasmasthe forcing, boundary, and initial conditions, the presence of
Among the most consistent characteristics one finds is thdfterfaces of null magnetic field within the plasma plays a
the magnetic field tends to be paralilsbmetimes antiparal- Positive role, in the sense that they force the field to be more
lel) in regions where its magnitude is large. Sunspots are garallel. The size of kinetic and magnetic diffusivity, i.e., of
typical example: the magnetic field either points outward oviscosity and resistivity obviously is essential in the main
inward from the Sun’s atmosphere, and it does not dispers@stimates. These bounds have been derived from recent re-
around. Sunspots of opposite polarity may be close togethegults on fluid vorticity{5,6], but many features are specific to
but still the radial character of the field is predominant.magnetohydrodynamics.
Simulations of dynamos are plentiful: most of them take the
fluid velocity for granted, disregarding the effect of the Lor- II. BOUNDARY CONDITIONS AND ENERGY
entz force upon it(kinematic dynamy but increasingly INEQUALITIES

models take into account the full magnetohydrodynamic We will hat the ol isfies the i
equations or some nonlinear approximation to them. The e will assume that the plasma satisfies the incompress-

phenomenon of alignment is also present: the most activg’Ie magnetohydrodynamicéMHD) equations with a ge-

regions are often cigar- or sheet-shaped, and in each of theftf"i¢ foreing:

the magnetic field is essentially unidirectiona@ee, e.g., au 2

[1,2]). These facts admid hocexplanations: if, as univer- — =pAu—u-Vu+ B~VB—Vp—V(

sally admitted, sunspots are the regions where a magnetic at

flux tube erupts through the surface, it is natural for the field B

to follow the tube axis; as for dynamo simulations, the mag- b _

netic field concentrates in regions of constructive folding at =7AB-u-VB+B-Vutg, @

(see, e.g.[3]) and follows the most unstable direction of the

flow [4], which usually is more or less constant in those V.u=V.B=0, 3

regions. These arguments, although far from rigorous, seem

essentially solid; anyway it appears that most of the magnetiplus some adequate boundary conditionsstands for the

field alignment is due to the dynamics of the phenomenoriluid velocity, B is the magnetic fieldp is the kinetic pres-

under consideration. But why does one never see a wideure,f andg are possible forcing terms, is the fluid viscos-

open sheaf of a strong magnetic field starting from a smality and » the resistivity of the plasma. With a different scal-

region? Diffusivity is one reason: sharp changes in the direcing » and » could represent the inverses of the kinetic and

tion of the field are rapidly smoothed, at a quicker rate thammagnetic Reynolds numbers. It often happens thad, but

the magnitude of the field. We will prove that if we decom- g=0, i.e., that while some material force, such as gravita-

pose the magnetic fielB in its magnitudeB times the unit  tion, acts upon the fluid, there is no added current for the

vectorb, B|Vb|2 remains bounded in the mean by a constaninduction equation. In this case the dependence of the esti-

depending only on the forcing and the initial conditions. mates upony improves. In the ideal case=0, the mag-

Thus we may guarantee that no dynamic process will pronetic field lines are transported by the flow as material

duce a largeéVb| in a sizable region wherB is also large.  points. The kinematic dynamo problem considers only the
The paper is divided in two main parts. In the first one weinduction equatiori2), by assumingi knowna priori. As for

deduce from the equations of incompressible magnetohydrdhe domain(2 where the fluid lies and the boundary condi-

+f, (D

2
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tions u and B must satisfy, we will allow many of them, 19 , 1a ) )
provided a Poincaréequality holds for the space of func- 5 ﬁ|“| 5 5|B| +v|Vul*+ 7| VB
tions under consideration. That is, there must be a conatant
such that for allw satisfying the conditions of our problem, R v du?
=- p+B°+su“|u-ndo+s | ——
a0 2 2 J a0 dn
f |w|2staf IVwZdV. ) )
Q Q n( JB
+ = —d0'+(f,u)|_2+(g,B)|_2, (6)
2 20 0N

This happens for practically all the interesting case$) lis
bounded and rather smoothipschitz), and there exists a

. . and integrating in time in an intervgd,T] where we assume
continuous seminorm on the Sobolev space

all the functions to exist,

Hl(Q)Nz[w/f|w|2dV+f |VW|2dV<OO}, G 1 1
o 0 SIU(T) 245 [B(T) |2+ 1] V2 + 4] VB2

such thatp is a norm in the constant functiorisnly vanish-

1 1
ing at the zero functionand it is identically zero on the =-|u(0)|?+5|B(0)|?
subspace oH(Q)N of functions satisfying our conditions, 2 2
then the Poincareequality always holdg7,8]. For instance, T 1
p could be —j dtf p+BZ+—u2)u~nda
0 90 2
2
pw = | wdv‘, g
QO +2 o dt 20 9N do
T oB2 T
p(w)=J w-n|do, Ef f - f
ml | +5 ] dt] S-do+ | (fu)adt
T
p(w)=f (wldV, Q,CQ,Vol(Qq)#0. +f0 (9,B)2dt. )
Qo

The first condition is appropriate for spaces of functions ofthe boundary integrals are negative whem=0 (there is
mean zero, the second one for any space suchwthal,,  no inflow toward the domajn and the size o and B2
=0, and the third one when the functions we are intel’este@ecreases in mean toward the boundar§2ofThey vanish in

in must vanish in a certain subset@f The spaceHé(Q)'}“ periodic problems, for homogeneous Dirichlet and Neumann
of functions vanishing in the boundary satisfies the Poincar@roblems, for the perfect conductor bound@&yn=0, (V
inequality even if() is bounded only in one direction, i.e., xB)xn=0, and they are negative for mixed problems with-
when it is contained between two hyperplanes. Periodigut intake of plasma: Ifi-n=0 andA is a positive matrix
problems are studied for functions of zero mean; when theguch that Aw+ gw/an)|,,=0, then

flow does not cross the boundary one ha®=0, and if

there is no inflow of plasmay-n=0. Except for the periodic W2

case we will always assuni& n=0 at the boundary, which n do= —ZJ w-AwdV=0.

happens when the magnetic field outsdlés null or parallel o @

to the boundary. Transmission problems are also allowed: if ] i ] ] ]

there is a wall withinQ such thatu-n, B-n, u?, B2 andp Not only in these configurations is the boundary integral

are continuous through it, the inequalities will remain valid. "€Ver positive: in most realistic cases, the size of velocity
We will make some notational conventions to avoid a@nd magnetic field decreases in mean towards the boundary,

cumbersome number of integrals. We will denote|lhythe so we will assume from now on that the boundary terms are
L2(Q) (or L2(Q)N) norm of a function not positive. Using Cauchy-Schwarz’s inequality, one gets

lez( f [w(t,x)[2 dV(x)> N UM+ 3BT+ Vul*+ 7| VB|*
! <3[u(0)>+3|B(O)*+|fll [ul + gl IB]. (8

For a fixed time interva[0,T], ||| will denote theL?(Q

%[0.T]) norm: Since we assume thatand B satisfy a Poincarénequality

(with possible different constants and 8), we have
T 1/2
ol [ Jwee oz avoo | u=alvul, [B=AIVB

2

Under any of these conditions, multiplying Ed) by u, Eq. Il ull=< Z||Vu||2+a—||f||2
2 2y

(2) by B, integrating inQ) and adding we get
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7 B AB2=2(AB)-B+2|VB|2.
gl Bl =< §||VB||2+5||9||2,

Therefore B? satisfies in the open set of points wheBe

we find #0,
2 2 2 2 1(0oB?
[u(M)[*+[B(T)[*+ »|Vul[“+ 7| VB] 5| +u-VB?—9AB?|+ 7| VB’=(B-Vu)-B+g-B.
a? B (14
<[u(0)[*+|BO)[*+— [+ —llgl*. (9
K Since alsaAB2=2(AB)B+2|VB|?,

This inequality yields a double estimate: upon the norm of JB
Vu, VB in L2([0,T]X Q) and upon the norm ai(T), B(T) B— +Bu-VB— »BAB— 7| VB|?+ 7| VB|?
in L2(Q). The last one could be further refined using Gron- Jt
wall's inequality[8], but we will not need this. I§=0, we =(B-Vu)-B+g-B. (15)
could admit ever,y=0 and boundB(T), but we cannot be
certain thatvVB remains bounded. The physical meaning isAlso, at any point withB+0,
that a magnetic field transported by a possibly chaotic flow
and unsmoothed by diffusion may undergo sharp spatigl_ _ )
variations, although its energy will not exceed the original VB :iEj: (9iBj)
one and the one contributed by the flow. ’

In the kinematic dynamo problem(with g=0, 2 2 o2 5
as it is usually studied we cannot cancel the term :%: (6iB)(by)"+B .2’ (iby) +2i§j: B(iB)bj(db;)
Jfa(B-VB)-udV with [o(B-Vu)-BdV, and we are left ’ ' ’
with =|VB|?+B?|Vb|?,

19 oB? because b?=1. Hence, dividing Eq(15) by B,

= —|B|?+ 77|VB|2=zf —da‘—i—f (B-Vu)-BdV. a

2 ot 2 Q) an Q JB

(10 EJru-VB—nABJrnB|Vb|2=(B-Vu)-b+g-b.

Assuming as before that the boundary integral is not positive (16)

and denoting byVul.. the supremum oWV u in Q, we have

1 4|BJ?

2 ot

Although B? is at least as smooth @, B may fail to be
7 differentiable at the null points d, and the equation above
$|B|2( |Vul..— —), (1)  is only valid at the open sdd—{B=0}. We will assumeB
B smooth enough i) X[0,T], and for the sake of simplicity,
that the second differential & does not vanish at any null
point of B. Then the null sets dB are either isolated points,
27 ¢ lines, or surfaces. For points or curvés3 is integrable in a
|B(t)|2$|3(0)lzexll( __t+2f |VU(S)|mdS). neighborhood of thenfas one sees by using spherical or
B 0 cylindrical coordinates: the possible singularity®B is in-

(12) tegrablg. By taking small neighborhoods, we see that these
sets may be ignored when integrating Ef6) in . The
surfaces of nulB, however, must be dealt with separately;

1 T they are interfaces separating the connected components of
7| VB|2< _|B(O)|2+f IVu(t)]..|B(t)[2dt, (13) Qe=0—{B=0}. The term u-VB remains bounded

2 0 throughout(Q) even at the set8=0. Moreover, for every

component of, its boundary is formed in part by surfaces
which may be bounded in several ways by using the previoughereB=0, and therefore the integral &u-n is zero, and
estimate or|B(t)|. Hence we are able to bouri B[ only  (perhaps by part of 9Q). The term»AB, however, is influ-

by using the additional hypothesjis|., <. enced by interfaces. Léd; be a component ofl,. Then

so that

Going back to Eq(10) and integrating i 0,T],

— do.
n

lll. ESTIMATES FOR THE UNIT MAGNETIC FIELD J' AB dvzj
0, 90,0

In every point where the magnetic field does not vanish,

let us writeB=Bb, whereB is the Euclidean norm & and  4¢ beforegQ, — Q) is formed by interfaces wheig=0: let
b is a unit vector. Sinc®-B=B?, I' be one of them. Thel' is also part of the boundary of
5 another component d,. For this second region, the outer
E ﬁz . ﬁ normal is opposite, whil® decreases toward at the same
2 at at’ rate at both sides of idue to the smoothness Bf). Hence
the contribution to the boundary integral Bfis multiplied

3u-VB?=(u-VB)-B, by two in the whole integration. If we denote hythe slope
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of B in every interfacd” (i.e., y=¢B/dn at both sideg and v do not occur in the denominator, which is convenient, but

I'j=T(t) are all the interfaces, the hypothesis of boundedness of the maximunVdi| is
very strong.
- JB Let M denote the bound obtained in the right-hand term
fQAB dv= 2; fpjydUJr LQ% dor. by the above considerations. Notice that it only depends on

the initial conditions, the forcing, and the hypothesis of the
Notice that sinceB decreases towarll;, alwaysy<0. In-  mean decrease & toward the boundary. The estimate
tegrating Eq.(16) in 2, we get

J T
— de+7;J B|Vb|?dV fB(T)dvmf f B|Vb|?2dV dt<M (19
tl)a Q Q 0Ja

B
=—f Bu'nd0'+27;2 f yda'-l—nJ —do ) ) . .
a0 i Jr a0 dn is our main result. Thaf,B(T) dV is bounded is not a sur-

prise when( is itself bounded, because thé norm|B(T)|
+ | (B-Vu)-bdV+ | g-bdV. (17) is bounded and it dominates thé norm: but for a domain
Q Q Q) of infinite measure this is an unrelated bound. Essentially
it is more demanding on the decrease|Bfx)| when |x|

Integrating in time i 0,T], — . However, the most interesting term is the second one:
T it bounds the changes of direction Bfin a more effective
f B(T) dV+ ,J J B|Vb|2dV dt way than||B|. Its dependence om and 7 is at worst like
Q 0JQ suqn711}73/2, ,'773/21}717 77721/71/2}, and 7’711}73/2 if g=0.

T T Generally speaking, this estimate limits the variations of
=— j f Bu-ndo dt+277f 2 J ydo dt direction of the magnetic field in regions where it is large. As

0 Jaa 0 JI a rather rough example of its order of accuracy, notice that
for any UC (), by Cauchy-Schwarz’s inequality,

T JB T
+7/J f —dadt+J J(B~Vu)'dedt
0 Jaadn 0Ja

T T T 1 1/2
+j Jg~dedt 18 f J|Vb|dthsM f Jngdt .
0Ja 0Ju 0Ju

Notice that the number and shapeIof may depend ort.

This first term of the right-hand side is always negative. TheThus the mean variation &f within a subset) whereB is in
second one is negative too, and its size increases with theean larger thah does not exceed the order ofyL/.

number of interfaces and their areas, as well as with the rate |t is important to notice that when dealing with antiparal-
of decrease oB toward them. If two interfaces are close |g] fields close by(say by changind to —B through a null
together and the magnetic field is not small between thempoing) one should not interpré b as the gradient of a jump

|¥| must be large and the contribution of the integral to thegyhich would yield a distributionab function, so that the
right hand side more negative. For intrincate interfaces th'?htegral ofB|Vb2| would be infinitd. Rather this means that
term may decrease the bounding constant to a significar ' crossing an interface and we must integrate separately in

deglyfree. tha d . i d the bound each of the regions. Thus it does not mattdy i§ parallel or
we assume ecreases In mean toward the boun “antiparallel, except that the last possibility denotes the pres-

ary, the third term is also negative. The fourth one may beence of interfaces and as explained before decreases the con-
bounded by||Vu| ||B|, and the last term by the integral in P

[0.T]1XQ of |g(x)|. [ Vul may be bounded by Eq9). This stantM. What is clearly forbidden are rapid spatial variations
bound scales like 1 if g=0, and like supy 1, (vy)~ Y2  Of binregions of large field.

otherwise.
As for |B||, there are several ways to estimate it. An
analogous bound to the previous one using Poiredre IV. CONCLUSIONS

equality would vyield a scale uy) Y? if g=0,
sud 7~ %, (vn) Y3 otherwise. We may also forget about the ~We have shown that one of the effects of kinetic and
term in VB and integratdB(T)| in time: this would scale magnetic dissipation is the alignment of the magnetic field in
like sugv~*2 2”2 but it would grow in time. These es- active regions of plasmas. The mean in time and space of the
timates are important because ofterand especiallyy are  field size multiplied by the square of the gradient of the unit
very small, so the smaller negative powers of them one usefield vector is bounded by a constant depending only on the
the better. initial conditions and the forcing terms, and improved by the
If we are dealing with a kinematic dynamo problem, possible presence of surfaces of null magnetic field. The de-
[Vul must be known to be boundeal priori, and |B| is  pendence of this constant on the orders of viscosity and re-
estimated by integrating Eq12) in time. In this casey and  sistivity has also been found.
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